Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.750
Filtrar
1.
Bioresour Technol ; 399: 130622, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518877

RESUMO

This study presents the development and application of a cellulose acetate phase-inversion membrane for the efficient harvesting of Tetraselmis sp., a promising alternative for aquaculture feedstock. Once fabricated, the cellulose acetate membrane was characterized, and its performance was evaluated through the filtration of Tetraselmis sp. broth. The results demonstrated that the developed membrane exhibited exceptional microalgae harvesting efficiency. It showed a low intrinsic resistance and a high clean water permeability of 1100 L/(m2·h·bar), enabling high-throughput filtration of Tetraselmis sp. culture with a permeability of 400 L/(m2·h·bar) and a volume reduction factor of 2.5 ×. The cellulose acetate -based membrane demonstrated robust filtration performance over a 7-day back concentration filtration with minimum irreversible fouling of only 22.5 % irreversibility even without any cleaning. These results highlighted the potential of cellulose acetate as a versatile base polymer for custom-membrane for microalgae harvesting.


Assuntos
Celulose/análogos & derivados , Clorófitas , Microalgas , Filtração , Polímeros
2.
Analyst ; 149(8): 2436-2444, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38498083

RESUMO

Paper-based electrochemical sensors have the characteristics of flexibility, biocompatibility, environmental protection, low cost, wide availability, and hydropathy, which make them very suitable for the development and application of biological detection. This work proposes electrospun cellulose acetate nanofiber (CA NF)-decorated paper-based screen-printed (PBSP) electrode electrochemical sensors. The CA NFs were directly collected on the PBSP electrode through an electrospinning technique at an optimized voltage of 16 kV for 10 min. The sensor was functionalized with different bio-sensitive materials for detecting different targets, and its sensing capability was evaluated by CV, DPV, and chronoamperometry methods. The test results demonstrated that the CA NFs enhanced the detection sensitivity of the PBSP electrode, and the sensor showed good stability, repeatability, and specificity (p < 0.01, N = 3). The electrochemical sensing of the CA NF-decorated PBSP electrode exhibited a short detection duration of ∼5-7 min and detection ranges of 1 nmol mL-1-100 µmol mL-1, 100 fg mL-1-10 µg mL-1, and 1.5 × 102-106 CFU mL-1 and limits of detection of 0.71 nmol mL-1, 89.1 fg mL-1, and 30 CFU mL-1 for glucose, Ag85B protein, and E. coli O157:H7, respectively. These CA NF-decorated PBSP sensors can be used as a general electrochemical tool to detect, for example, organic substances, proteins, and bacteria, which are expected to achieve point-of-care testing of pathogenic microorganisms and have wide application prospects in biomedicine, clinical diagnosis, environmental monitoring, and food safety.


Assuntos
Técnicas Biossensoriais , Celulose/análogos & derivados , Escherichia coli O157 , Nanofibras , Nanofibras/química , Celulose/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
3.
Int J Biol Macromol ; 263(Pt 2): 130523, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428771

RESUMO

As a natural pH-sensing colorant, purple sweet potato anthocyanins (PSPAs) have demonstrated great potential in colorimetric film for freshness monitoring. However, the photothermal instability of PSPAs is still a challengeable issue. Herein, γ-cyclodextrin metal-organic framework (CD-MOF) loaded with PSPAs (PSPAs@CD-MOF, i.e., PM) and eugenol (EUG) were incorporated in cellulose acetate (CA) matrix for developing a smart active colorimetric film of CA/PM/EUG, where PM and EUG were hydrogen-bonded with CA. Attentions were focused on the photothermal colorimetric stability, colorimetric response, and antibacterial activity of the films. The presence of PM and EUG endowed the film outstanding UV-blocking performance and enhanced the barrier against water vapor and oxygen. Target film of CA/PM15/EUG10 had good photothermal colorimetric stability due to the protection of CD-MOF on PSPAs and the color changes with pH-stimuli were sensitive and reversible. In addition to antioxidant activity, CA/PM15/EUG10 had antibacterial activity against Escherichia coli and Staphylococcus aureus. The application trial results indicated that the CA/PM15/EUG10 was valid to indicate pork freshness and extended the shelf-life by 100 % at 25 °C, which has demonstrated a good perspective on smart active packaging for freshness monitoring and shelf-life extension.


Assuntos
Celulose/análogos & derivados , Ciclodextrinas , Ipomoea batatas , Estruturas Metalorgânicas , Carne de Porco , Carne Vermelha , Suínos , Animais , Antocianinas/farmacologia , Colorimetria , Eugenol , Antibacterianos/farmacologia , Escherichia coli , Embalagem de Alimentos , Concentração de Íons de Hidrogênio
4.
Int J Pharm ; 654: 123972, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38458404

RESUMO

A core-sheath structure is one of the methods developed to overcome the challenges often faced when using monolithic fibers for drug delivery. In this study, fibers based on polyvinylpyrrolidone (core) and ethyl cellulose (sheath) were successfully produced using a novel core-sheath pressure-spinning process. For comparison, these two polymers were also processed into as blend fibers. All samples were then investigated for their performances in releasing water-soluble ampicillin (AMP) and poorly water-soluble ibuprofen (IBU) model drugs. Scanning electron,digital and confocal microscopy confirmed that fibers with a core-sheath structure were successfully made. Fourier transform infrared spectroscopy showed the success of the pressure-spinning technique in encapsulating AMP/IBU in all fiber samples. Compared to blend fibers, the core-sheath fibers had better performance in encapsulating both water-soluble and poorly water-soluble drugs. Moreover, the core-sheath structure was able to reduce the initial burst release and provided a better sustained release profile than the blend fiber analog. In conclusion, the pressure-spinning method was capable of producing core-sheath and blend fibers that could be used for the loading of either hydrophilic or hydrophobic drugs for controlled drug delivery systems.


Assuntos
Celulose/análogos & derivados , Nanofibras , Povidona , Povidona/química , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas , Água , Nanofibras/química
5.
Int J Biol Macromol ; 265(Pt 1): 130757, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462107

RESUMO

In this study, an easy and low-cost production method for a cellulose acetate-based gel polymer containing lithium perchlorate and propylene carbonate is described, as well as the investigation of its properties for potential use as an electrolyte in electrochemical devices. Cellulose acetate, a biopolymer derived from natural matrix, is colourless and transparent, as confirmed by the UV-Vis spectroscopy, with 85 % transparency in visible spectrum. The gels were prepared and tested at different concentrations and proportions to optimise their properties. Thermogravimetry, XRD, and FTIR analyses revealed crucial characteristics, including a substantial 90 % mass loss between 150 and 250 °C, a semi-crystalline nature with complete salt dissociation within the polymer matrix, and a decrease in intensity at 1780 cm-1 with increasing Li+ ion concentration, suggesting an improvement in ionic conduction capacity. In terms of electrochemical performance, the gel containing 10 % by mass of cellulose acetate and 1.4 M of LiClO4 emerged as the most promising. It exhibited a conductivity of 2.3 × 10-4 S.cm-1 at 25 °C and 3.0 × 10-4 S.cm-1 at 80 °C. Additionally, it demonstrated an ideal shape of cyclic voltammetry curves and stability after 400 cycles, establishing its suitability as an electrolyte in electrochemical devices.


Assuntos
Celulose/análogos & derivados , Eletrólitos , Polímeros , Condutividade Elétrica
6.
Int J Biol Macromol ; 265(Pt 1): 130813, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479667

RESUMO

In this study, an active and intelligent nanofilm for monitoring and maintaining the freshness of pork was developed using ethyl cellulose/gelatin matrix through electrospinning, with the addition of natural purple sweet potato anthocyanin. The nanofilm exhibited discernible color variations in response to pH changes, and it demonstrated a higher sensitivity towards volatile ammonia compared with casting film. Notably, the experimental findings regarding the wettability and pH response performance indicated that the water contact angle between 70° and 85° was more favorable for the smart response of pH sensitivity. Furthermore, the film exhibited desirable antioxidant activities, water vapor barrier properties and also good antimicrobial activities with the incorporation of ε-polylysine, suggesting the potential as a food packaging film. Furthermore, the application preservation outcomes revealed that the pork packed with the nanofilm can prolong shelf life to 6 days, more importantly, a distinct color change aligned closely with the points indicating the deterioration of the pork was observed, changing from light pink (indicating freshness) to light brown (indicating secondary freshness) and then to brownish green (indicating spoilage). Hence, the application of this multifunctional film in intelligent packaging holds great potential for both real-time indication and efficient preservation of the freshness of animal-derived food items.


Assuntos
Celulose/análogos & derivados , Carne de Porco , Carne Vermelha , Suínos , Animais , Gelatina , Ração Animal , Antocianinas , Embalagem de Alimentos , Concentração de Íons de Hidrogênio
7.
Carbohydr Polym ; 332: 121935, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431402

RESUMO

A novel cellulose composite (denoted as PEI@MMA-1) with porous interconnected structure was prepared by adsorbing methyl cellulose (MC) onto microcrystalline cellulose (MCC) and cross-linking polyethyleneimine (PEI) with MCC by the action of epichlorohydrin, which had the excellent adsorption property, wettability and elasticity. The performances of PEI@MMA-1 composite for removing tetracycline (TC), Cu2+ and coexistent pollutant (TC and Cu2+ mixture) were systematically explored. For single TC or Cu2+ contaminant, the maximum adsorption capacities were 75.53 and 562.23 mg/g at 30 °C, respectively, while in the dual contaminant system, they would form complexes and Cu2+ could play a "bridge" role to remarkably promote the adsorption of TC with the maximum adsorption capacities of 281.66 and 253.58 mg/g for TC and Cu2+. In addition, the adsorption kinetics, isotherms and adsorption mechanisms of single-pollutant and dual-pollutant systems have been thoroughly investigated. Theoretical calculations indicated that the amide group of TC molecule with the assistance of Cu2+ interacted with the hydroxyl group of PEI@MMA-1 composite to enhance the TC adsorption capacity. Cycle regeneration and fixed bed column experiments revealed that the PEI@MMA-1 possessed the excellent stability and utility. Current PEI@MMA-1 cellulose composite exhibited a promising application for remediation of heavy metals and antibiotics coexistence wastewater.


Assuntos
Celulose/análogos & derivados , Cobre , Polietilenoimina/análogos & derivados , Poluentes Químicos da Água , Cobre/química , Adsorção , Poluentes Químicos da Água/química , Tetraciclina/química , Antibacterianos , Íons , Cinética
8.
Int J Pharm ; 653: 123880, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38350498

RESUMO

The use of cerium oxide nanoparticles (CeO2NPs) in diabetic wound repair substances has shown promising results. Therefore, the study was conducted to introduce a novel nano-based wound dressing containing chitosan nanoparticles encapsulated with green synthesized cerium oxide nanoparticles using Thymus vulgaris extract (CeO2-CSNPs). The physical properties and structure of the nanoparticles were analyzed using XRD, DLS, FESEM and FTIR techniques. The electrospun PCL/cellulose acetate-based nanofiber was prepared and CeO2-CSNPs were integrated on the PCL/CA membrane by electrospraying. The physicochemical properties, morphology and biological characteristics of the electrospun nanocomposite were evaluated. The results showed that the nanocomposite with 0.1 % CeO2-CSNPs exhibited high antibacterial performance against S. aureus (<58.59 µg/mL). The PCL/CA/CeO2-CSNPs nanofiber showed significant antioxidant activity up to 89.59 %, cell viability improvement, and cell migration promotion up to 90.3 % after 48 h. The in vivo diabetic wound healing experiment revealed that PCL/CA/CeO2-CSNPs nanofibers can significantly increase the repair rate of diabetic wounds by up to 95.47 % after 15 days. The results of this research suggest that PCL/CA nanofiber mats functionalized with CeO2-CSNPs have the potential to be highly effective in treating diabetes-related wounds.


Assuntos
Celulose/análogos & derivados , Cério , Quitosana , Diabetes Mellitus , Nanofibras , Nanopartículas , Humanos , Nanofibras/química , Quitosana/química , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização
9.
Int J Biol Macromol ; 262(Pt 1): 129904, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311137

RESUMO

In this research, the carvacrol (CAR) loaded cellulose acetate phthalate (CAP) /shellac (SH) films were prepared via electrostatic repulsion strategy and casting method. The CAP/SH-CAR films demonstrated excellent tensile strength, while also exhibiting good UV light barrier and thermal stability. The results showed that the addition of CAR significantly improved the barrier of the CAP film to water vapor and oxygen permeability. When the addition amount of CAR was 0.9 % (w/w) with respect to CAP content, the CAP/SH-CAR films exhibited good antibacterial activity and effectively reduced the growth of S. aureus and E. coli by approximately 47.9 % and 50.9 %, respectively. The presence of SH improved the retention rate of CAR in CAP/SH-CAR films, with the retention rate ranging from 45.2 to 56.8 %. Finally, the CAP/SH-CAR films were applied to preserve the mackerel fillets, indicating that the rate of freshness deterioration had been delayed and showing a good freshness preservation effect. Therefore, the CAP/SH-CAR films have the potential to be used as food packaging materials.


Assuntos
Celulose/análogos & derivados , Cimenos , Escherichia coli , Resinas Vegetais , Staphylococcus aureus , Embalagem de Alimentos
10.
Int J Biol Macromol ; 262(Pt 1): 130067, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336318

RESUMO

The use of metal catalysts during the production process of cellulose acetate (CA) film can have an impact on the environment, due to their toxicity. Diphenyl phosphate (DPP) was used instead of toxic metal catalyst to react with cellulose acetate, tannin (T) and caprolactone (CL) for preparation of cellulose acetate-caprolactone-tannin (CA-CL-T) film. The results show that DPP can produce a cross-linked network structure composed of tannin, caprolactone and cellulose acetate. The maximum molecular weight reached 113,260 Da. The introduction of tannin and caprolactone into cellulose acetate caused the resulting CA-CL-T film acquire excellent strengthening/toughening effect, in which a tensile strength of 23 MPa and elongation at break of 18 % were attained. More importantly, the resistance of the film to UV radiation was significantly improved with the tannin addition, which was corroborated by the CA-CL-T film still exhibiting a tensile strength of 13 MPa and elongation at break around 13 % after continuous exposure to UV radiation for 9 days. On the other hand, the insertion of caprolactone provoked enhancement of the overall moisture resistance. Five days treatment of the films with Penicillium sp. induced gradual drop in quality, indicating the CA-CL-T film show response to biodegradation. In all, the effective crosslinking between the components of the developed material is responsible for the acquired set of these distinct characteristics.


Assuntos
Caproatos , Celulose/análogos & derivados , Lactonas , Taninos , Resistência à Tração
11.
Biomater Adv ; 158: 213782, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377664

RESUMO

In the study, the fabrication of superparamagnetic-fluorescent bioactive glasses in the form of the particle, nanofiber, and 3D scaffolds was performed by including maghemite (γ-Fe2O3) nanoparticles and photoluminescent rare earth element ions (Eu3+, Gd3+, and Yb3+) using sol-gel, electrospinning, and robocasting techniques, respectively. The in vitro cytotoxicity of the magnetic-fluorescent bioactive glasses on osteosarcoma SaOS-2, pre-osteoblast MC3T3-E1, and BJ fibroblast cells, as well as their hemolytic activity and sorafenib tosylate loading and release behavior, were investigated. The cytotoxicity of the bioactive glass samples was tested using the MTT assay. Additionally, the alkaline phosphatase activity of the studied glasses was examined as a function of time. The mineralization behavior of the pre-osteoblast cell-seeded glass samples was analyzed using Alizarin red S staining. Results revealed that the in vitro cytotoxicity of the studied bioactive glasses in the form of particles and nanofibers depended on the sample concentration, whereas in the case of the 3D scaffolds, no cytotoxic response was observed on the osteosarcoma, pre-osteoblast, and fibroblast cells. Similarly, particle and nanofiber-based glass samples induced dose-dependent hemolysis on red blood cells. Drug loading rates were much lower for the 3D scaffolds compared to the particle and nanofiber-based samples. Drug release rates ranged from 25 % to 90 %, depending on the bioactive glass morphology and the pH of the release medium. It was concluded that the studied bioactive glasses have the potential to be used in tissue engineering applications and cancer therapy.


Assuntos
Celulose/análogos & derivados , Eliptocitose Hereditária , Hemólise , Osteossarcoma , Poloxâmero , Humanos , Sorafenibe , Fenômenos Físicos , Corantes , Fenômenos Magnéticos
12.
Int J Biol Macromol ; 262(Pt 2): 130196, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360223

RESUMO

Sea water desalination is regarded as a major solution that could alleviate the water scarcity problem. Reverse osmosis (RO) is typically employed to recover fresh water from sea and brackish water via economical means. RO membrane fouling remains a critical issue restricting their widespread application. In this work, a tertiary thiophenal quaternary ammonium salt-based antibacterial agent was covalently reacted with cellulose acetate (CA) to obtain contact-active antibacterial quaternized CA-RO membrane (QCA-RO). The membrane was characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, water contact angle testing, and X-ray diffraction spectroscopy. The obtained QCA-RO membrane displayed good antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus and had bactericidal rates of 99 % in the presence of visible light. Results showed that embedding the quaternary ammonium salt did not cause any significant changes to the morphology, mechanical performance, and thermal stability of the RO membrane. The method described in this work not only produces QCA-RO membranes with good anti-biofilm performance but also presents great potential in seawater desalination.


Assuntos
Incrustação Biológica , Celulose/análogos & derivados , Purificação da Água , Incrustação Biológica/prevenção & controle , Antibacterianos/farmacologia , Antibacterianos/química , Água do Mar/química , Compostos de Amônio Quaternário , Osmose , Membranas Artificiais , Purificação da Água/métodos
13.
Int J Biol Macromol ; 263(Pt 1): 130243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378111

RESUMO

This study investigates the influence of citric acid concentration on the fabrication of porous cellulose acetate (CA) membranes using the Non-Solvent Induced Phase Separation (NIPS) method. A notable aspect is the precise control over membrane properties, particularly pore size and porosity, achieved solely through the adjustment of citric acid concentration, serving as the additive. Higher concentrations of citric acid increase pore size by rendering polymer chains more pliable, whereas lower concentrations lead to smaller, denser pores due to improved dispersion in the CA matrix and altered water interactions during phase separation. A decrease in porosity and Gurley values with reducing citric acid concentrations (from 5 × 10-2 to 1 × 10-3 M ratios) indicates less plasticization of CA chains. However, at very low concentrations (1 × 10-4 and 1 × 10-5), porosity increases, despite the presence of smaller pores, and Gurley values approach those of pure CA in terms of gas permeability. Fourier Transform Infrared (FT-IR) spectroscopy confirms the presence of citric acid and its interaction with carbonyl groups, consistent with the pore size observations from Scanning Electron Microscopy (SEM). Spectral data deconvolution reveals weakened carbonyl bonds due to the reduced presence of citric acid, correlating with the smaller pores observed in SEM. Thermal Gravimetric Analysis (TGA) demonstrates that composite membranes are more thermally stable than pure CA, attributed to the citric acid-induced crosslinking within the polymer chains. Stability increases with decreasing citric acid concentration, with some anomalies at the lowest levels. In conclusion, this study highlights the capability of adjusting citric acid concentration to tailor membrane properties, offering valuable insights for the creation of porous materials across diverse industrial applications.


Assuntos
Celulose , Celulose/análogos & derivados , Polímeros , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Celulose/química
14.
Int J Biol Macromol ; 260(Pt 2): 129535, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244747

RESUMO

Microbeads are used in personal care and cosmetic products (PCCPs) but are produced from nondegradable materials. Biodegradable polyhydroxybutyrate (PHB) has been recognized as a promising alternative material for use in PCCPs; however, utilizing PHB to encapsulate PCCPs is challenging because PCCPs need to be protected from the environment but their release needs to be permitted under specific physiological conditions. The aim of this work was to develop and evaluate pH-responsive cellulose acetate phthalate (CAP) to formulate lipophilic α-tocopherol acetate (α-TA)-loaded pH-responsive PHB/CAP microbeads. The influences of the PHB/CAP ratio and initial α-TA loading on the microbead size, surface morphology, encapsulation efficiency (%EE), loading capacity (%LC), and α-TA release profile were studied. The microbeads exhibited a spherical shape with a size of 328.7 ± 2.9 µm. The EE and LC were 86.7 ± 2.6 % and 13.5 ± 0.4 %, respectively. The release profile exhibited pH-responsive characteristics. These α-TA-loaded pH-responsive microbeads were stable with >50 % of the α-TA remaining after 90 days at 4, 25 and 45 °C in the dark. The results from the cytotoxicity assay with PSVK1 cells demonstrated that the microbeads were nontoxic. Hence, our developed formulation has the potential to be used to encapsulate oil-based drugs to formulate lipophilic substance-loaded pH-responsive microbeads.


Assuntos
Celulose/análogos & derivados , Poli-Hidroxibutiratos , alfa-Tocoferol , alfa-Tocoferol/farmacologia , Microesferas , Concentração de Íons de Hidrogênio
15.
Environ Res ; 248: 118263, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38281564

RESUMO

With the increase of sustainable development goal, the bio-based adsorption materials with high and selective dye removal are important for water treatment in the dyeing industry. In this paper, a bio-based adsorption foam composed of metal-organic frameworks (MOF) and polyethyleneimine (PEI)-modified cellulose was prepared by a three-step process, i.e., PEI modification of cellulose fibers (PC), MOF decoration of PEI-modified cellulose (MIL-53@PC), and in-situ foaming with polyurethane. PEI modification provides cellulose fiber with more active sites for both dye adsorption and MOF bonding. We found that MIL-53 crystals were tightly bonded on the surface of PC through hydrogen bonding. Because of the abundant adsorption sites (e.g., amines, iron oxide group), the MIL-53@PC demonstrated high adsorption capacity and selectivity for anionic dye (e.g., 936.5 mg/g for methyl orange) through electrostatic interaction and hydrogen bonding. Finally, MIL-53@PC particles were blended with a waterborne polyurethane prepolymer to prepare a three-dimensional hydrophilic foam (MIL-53@PC/PUF), which not only maintained high adsorption capacity and selectivity of MIL-53@PC and also improved its recyclability and reusability. The MIL-53@PC/PUF offers a promising solution for dye wastewater treatment.


Assuntos
Celulose/análogos & derivados , Estruturas Metalorgânicas , Polietilenoimina/análogos & derivados , Poluentes Químicos da Água , Corantes/química , Adsorção , Polietilenoimina/química , Poliuretanos , Poluentes Químicos da Água/química
16.
Chemosphere ; 351: 141149, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218233

RESUMO

This study utilizes the abundance of pharmacologically active compounds found in natural products and concentrates on the promising anticancer agent lupeol (LUP). The limited water solubility and bioavailability of lupeol have limited its therapeutic utility. To test their potential for treating diabetes and cancer, we synthesized lupeol@chitosan (LUP@CS) nanoparticles encapsulated in cellulose acetate (CA) membranes (LUP@CS/CA). Extensive characterization, including Scanning electron microscopy, Thermogravimetric analysis, X-ray photoelectron spectroscopy, and mechanical strength analysis, confirmed the membrane's structural integrity and drug release capacity. Notably, in vitro experiments utilizing A431 human skin cancer cells revealed remarkable anticancer activity, positioning the membrane as a potential novel therapeutic agent for the treatment of skin cancer. Inhibiting carbohydrate-digesting enzymes effectively, as evidenced by IC50 values as low as 54.56 mg/mL, the membrane also exhibited significant antidiabetic potential. These results demonstrate the multifarious potential of the membrane, which offers promise for both the treatment of skin cancer and the management of diabetes, and has significant implications for nano biological applications.


Assuntos
Celulose/análogos & derivados , Quitosana , Diabetes Mellitus , Lupanos , Nanopartículas , Neoplasias Cutâneas , Humanos , Quitosana/farmacologia , Quitosana/química , Hipoglicemiantes/farmacologia , Nanopartículas/química
17.
Food Chem ; 442: 138436, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244441

RESUMO

Fruit is susceptible to various postharvest pathogens; thus, the development of multifunctional preservation materials that can achieve the broad-spectrum inhibition of different pathogens is a current research hotspot. Here, microfluidic blow spinning was used to create a biodegradable polycaprolactone/ethyl cellulose (PCL/EC) nanofibrous film that incorporated two naturally-sourced compounds, natamycin and trans-cinnamic acid, resulting in multi-microbial inhibition. The PCL/EC-based film had a smooth and even morphology, indicating the favorable integration of PCL and EC. After the incorporation of ingredients, the film exhibited good inhibitory activity against Escherichia coli, Staphylococcus aureus, and Botrytis cinerea, and it had finer fiber diameters, higher permeability, and antioxidant properties. We further demonstrated that strawberries that were padded with the film had good resistance to Botrytis cinerea. Also, the film did not interference with the qualities of the strawberries during storage. The study demonstrates a promising application for multi-antimicrobial and bio-friendly packaging materials in postharvest fruit preservation.


Assuntos
Anti-Infecciosos , Botrytis , Celulose/análogos & derivados , Cinamatos , Nanofibras , Poliésteres , Natamicina , Frutas , Microfluídica , Anti-Infecciosos/farmacologia
18.
Carbohydr Polym ; 329: 121794, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286531

RESUMO

Cellulose acetate (CA)-based electrospun nanofiber aerogel (ENA) has drawn extensive attention for wastewater remediation due to its unique separation, inherent porosity and biodegradability. However, the low mechanical strength, poor durability, and limited adsorption ability hinder its further applications. We herein propose using silane-modified ENA, namely T-CA@Si@ZIF-67 (T-ENA), with enhanced resilience, hydrophobicity, durability and hetero-catalysis to remediate a complex wastewater containing oil and drug residues. The robust T-ENA was fabricated by pre-doping tetraethyl orthosilicate (TEOS) and ligand in its spinning precursors, followed by in-situ anchoring of porous ZIF-67 on the electrospun nanofibers (ENFs) via seeding method before freeze-drying and thermal curing (T). Results show that the T-ENA displays enhanced mechanical stability/resilience and hydrophobicity without compromise of its high porosity (>98 %) and low density (10 mg/cm3) due to the silane cross-linking. As a result, the hydrophobic T-ENA shows over 99 % separation efficiency towards different oil-water solutions. Meanwhile, thanks to the enhanced adsorption-catalytic ability and the activation of peroxymonosulfate (PMS) from the porous ZIF-67, fast degradation of carbamazepine (CBZ) residue in the wastewater can be achieved within 20 min. This work might provide a novel strategy for developing CA aerogels to remove organic pollutants.


Assuntos
Celulose/análogos & derivados , Resíduos de Drogas , Nanofibras , Resiliência Psicológica , Nanofibras/química , Géis/química , Águas Residuárias , Silanos , Interações Hidrofóbicas e Hidrofílicas
19.
Colloids Surf B Biointerfaces ; 234: 113753, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38241888

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by interrupted neurocognitive functions and impaired mental development presumably caused by the accumulation of amyloid beta (Aß) in the form of plaques. Targeting Aß has been considered a promising approach for treating AD. In the current study, human serum albumin (HSA), a natural Aß binder, is covalently immobilized onto the surface of a cellulose acetate (CA) membrane to devise an extracorporeal Aß sequester. The immobilization of HSA at 3.06 ± 0.22 µg/mm2 of the CA membrane was found to be active functionally, as evidenced by the esterase-like activity converting p-nitrophenyl acetate into p-nitrophenol. The green fluorescent protein-Aß (GFP-Aß) fusion protein, recombinantly produced as a model ligand, exhibited characteristics of native Aß. These features include the propensity to form aggregates or fibrils and an affinity for HSA with a dissociation constant (KD) of 0.91 µM. The HSA on the CA membrane showed concentration-dependent sequestration of GFP-Aß in the 1-10-µM range. Moreover, it had a greater binding capacity than HSA immobilized on a commercial amine-binding plate. Results suggest that the covalent immobilization of HSA on the CA surface can be used as a potential platform for sequestering Aß to alleviate AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Celulose/análogos & derivados , Humanos , Peptídeos beta-Amiloides/química , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Albumina Sérica Humana/química
20.
Int J Biol Macromol ; 261(Pt 1): 129466, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242414

RESUMO

In order to modify colonic release behavior of lactoferrin (Lf), a hydrophobic composite nanofibrous carrier (CNC) was constructed by emulsion coaxial electrospinning. Ethylcellulose/pectin based water-in-oil emulsion and Lf-contained polyvinyl alcohol solution were used as shell and core fluids, respectively. An electrospinning diagram was first constructed to screen out suitable viscosity (51-82 cP) and conductivity (960-1300 µS/cm) of the dispersed phase of pectin solution for successful electrospinning of shell emulsion. Varying mass fraction of pectin solution (5 %-20 %) of shell emulsion during emulsion coaxial electrospinning obtained CNCs with different micro-structures, labeled as 5&95 CNC, 10&90 CNC, 15&85 CNC, 20&80 CNC. These CNCs all achieved colonic delivery of Lf (>95 %), and the time for complete release of Lf in simulated colon fermentation process were 10, 7, 5 and 3 h, respectively. That is, the greater the pectin content in CNC, the faster the release rate of stabilized Lf in colon. Lf release in simulated colon fermentation fluid involved complex mechanisms, in which diffusion release of Lf was dominant. Increasing colonic release rate of Lf enhanced its regulation effect on the expression levels of cell cycle arrest and apoptosis-related protein and promote its effective inhibition on the proliferation of HCT116 cell.


Assuntos
Celulose/análogos & derivados , Neoplasias do Colo , Nanofibras , Humanos , Pectinas/química , Lactoferrina/química , Emulsões/química , Neoplasias do Colo/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...